

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN MARINE ENGINEERING
AMA 2103: ENGINEERING MATHEMATICS I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MARCH 2014
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages
SECTION A (COMPULSORY)

Question One

a) (i) Without using tables evaluate:

$$
\begin{gathered}
24^{1 / 3} \times 81^{1 / 6} \times 125^{-1 / 3} \\
16 \log _{x}^{3}=\log _{3}^{x}
\end{gathered}
$$

(ii) Solve for x if
(8 marks)
b) The first term of a geometric progression is 8 and the nth term is $1 / 8$ the common ratio is $1 / 2$ determine the sum of the first in terms
(5 marks)

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 0 \\
4 & 1
\end{array}\right) \quad(A B)^{-1}=(B A)^{-1}
$$

c) (i) Given that and determine if
(ii) In a soccer results, a win scores 3 point, a draw 1 point, and a loss no point. By forming matrices, determine the best team of the following:

Team	Wins	Draws	Losses
A	15	1	3
B	13	6	0
C	8	6	5
D	13	3	3

(10 marks)
d) Table 1 shows the data of marks obtained by twenty students in a class:

Table 1

Marks (x)	3	4	5	6	8	9	10	11	13
Frequency (f)	2	1	5	3	3	2	1	1	2

Determine:
(i) The mean
(ii) The standard deviation without calculating deviations of the mean

SECTION B (Answer any TWO questions from this section)

Question Two

a) Simply the following:

$$
\frac{a^{1 / 2} b^{-1 / 2} \times a^{1 / 2} b^{1 / 2}}{a^{-1 / 2} b^{-1 / 2}}
$$

(i)

$$
\left(\frac{a^{x}}{a^{y}}\right)^{x+y} \times\left(\frac{a^{4}}{a^{z}}\right)^{y+z} \times\left(\frac{a^{z}}{a^{x}}\right)^{a+z}
$$

(ii)
b) Without using tables, evaluate the following:

$$
3^{2 x}-9^{(x-1 / 2)}=6
$$

(i)

$$
\log _{a}\left(\frac{1}{27}\right)
$$

(ii)
c) (i) If $\begin{gathered}P=\log _{8} N \quad q=\log _{2} 2 N \\ \log _{2} 3=P,\end{gathered} \quad q=1+3 p$
(ii) Given express in terms of p

Question Three

a) The $1^{\text {st }}, 5^{\text {th }}$ and last term of an arithmetic progression are 6, 202 and 447 respectively. Determine the number of terms of the arithmetic progression
b) In a geometric progression, the sum of the $3^{\text {rd }}$ and $4^{\text {th }}$ terms is 6 . Determine the first term, common ratio and the sum to infinity of the geometric progression
c) A geometric progression has $1^{\text {st }}$ term a, common ratio r and the sum to its first n terms is 422 .

$$
a r^{a-1}=\frac{422(r-1)+a}{r}
$$

(i) Show that
(ii) If the $1^{\text {st }}$ and nth terms are 32 and 162 respectively, determine r and n.

Question Four

a) Find the value of the following:

$$
(15 \div 3+4)-\left(3^{2}-7 \times 2\right)
$$

(i)

$$
\frac{4^{2}-6+5}{\left(3^{2}+8-7 \times 2\right)}
$$

(ii)
b) Determine the greatest common factor (GCF) and lowest common multiple (LCM) of 2250 and 980
c) Simplify the following:

$$
\frac{6}{3 x+3 y}-\frac{x}{x^{2}-x y}
$$

(i)

$$
\frac{(x+2)^{1 / 2}(x-1)^{1 / 2}+(x+2)^{-1 / 2}(x-)^{1 / 2}}{(x+2)^{-1 / 2}(x-1)^{-1 / 2}}
$$

(ii)
(7 marks)

$$
\frac{a}{2 x-3}+\frac{b}{3 x+4}=\frac{x+7}{(2 x-3)(3 x+4)}
$$

d) If
determine the values of a and b
(5 marks)

Question Five

a) In a work study investigation, the times taken by 20 men in a firm to do a particular job were tabulated as shown in table 2.
Table 2:
$\begin{array}{lllrrrr}\text { Time (mm) } & 8-10 & 11-1314-16 & 17-18 & 20-22 & 23-25 \\ \text { Frequency } & 2 & 4 & 6 & 4 & 3 & 1\end{array}$
Calculate:
(i) The median
(ii) Interquartile range
(iii) $40^{\text {th }}$ percentile
b) Table 3 is the data for the marks obtained in a test by 88 students.

Table 2

Marks (x)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	2	5	16	9	5

Calculate without using deviation
(i) The mean mark
(ii) The standard deviation
(8 marks)

