TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
CERTIFICATE IN MECHANICAL ENGINEERING (Y1 S1)

AMA 1150: ENGINEERING MATHEMATICS I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

Question One (Compulsory)

a) Express the following with positive indices:

$$
\frac{2 b^{-3} x^{2}}{7 c^{-4} y^{2}}
$$

(i)

$$
\frac{\sqrt[3]{\left|y^{-c}\right|}}{\sqrt[3]{y^{2}}}
$$

(ii)

$$
\left(\frac{81}{16}\right)^{3 / 4}
$$

b) Evaluate
c) Solve the following equations:

$$
2 \log \left(x^{2}-5\right)=4 \log 2
$$

(i)

$$
\log (x-2)+\log (x-6)-\log 5=0
$$

(ii)
d) $\mathrm{A}, \mathrm{N}, \mathrm{R}, \mathrm{V}$ are connected by the relation $\log \mathrm{V}-\log \mathrm{N}=\log \mathrm{A}+2 \log \mathrm{R}$ By first expressing R in $A=4 \times 10^{-5}, N=1.44 \times 10^{-3}$
terms of A, N and V find without using tables the value of R when and $v=3.24 \times 10^{-2}$
(6 marks)

$$
\sqrt[4]{0.0007256}
$$

e) Simplify

Question Two

a) The sum of the second and fourth terms of an arithmetic progression is 15 and the sum of the fifth and sixth term is 25 . Find the first term and the common difference
b) The sum of the first two terms of a geometric progression is 3 , and the sum of the second and third term is -6 . Find the first term and the common ratio.
(7 marks)
c) Solve the following quadratic equation:

$$
2 x^{2}+x-1=0
$$

(i)

$$
2 x^{2}-11 x+3=0
$$

(ii)

Question Three
a) A ball falls vertically after being dropped. The ball falls a distance d metres in a time of t seconds. d is directly proportional to the square of t. The ball falls 20 metres in a time of 2 seconds.
(i) Find a formula for d in terms of t
(ii) Calculate the distance the ball falls in 3 seconds
(iii) Calculate the time the ball takes to fall 505 m
b) The force F between two magnets is inversely proportional to the square of the distance, x between them. When $x=3, F=4$:
(i) Calculate F when $\mathrm{x}=2$
(ii) Calculate x when $\mathrm{F}=64$
c) MN and KL are two chords that intersect in a circle at 0 . Given that $\mathrm{AO}=4 \mathrm{~cm}, \mathrm{KO}=5 \mathrm{~cm}$ and $\mathrm{OL}=$ 3 cm . Find MN.
(6 marks)

Question Four

a) Determine the volume and surface area of a cone with a base radius of 21 cm and height of 30 cm
b) Determine the area of the minor sector in the circle below:
(3 marks)

$$
\mathrm{r}=7 \mathrm{~cm}
$$

c) Solve the following simultaneous equations:

$$
\begin{aligned}
& 4 x+2 y=14 \\
& 3 x+5 y=21
\end{aligned}
$$

(i)

$$
\begin{aligned}
& 5 x+7 y=19 \\
& 6 x+3 y=12
\end{aligned}
$$

(ii)
(10 marks)

Question Five

$$
V_{o} e^{-k t}
$$

a) The charge on a capacitor is falling and the voltage V at any time t seconds is given by , where V_{o} is the original voltage and K is a constant. If $V_{o}=200, e=2.718$ and $K=0.0075$, find the value of V after 3.5 seconds.

$$
(\alpha)
$$

b) The attenuation of a telephone cable (in dB) is given by:

$$
\alpha=10 \log \left(\frac{\text { power sent }}{\text { power received }}\right)
$$

If a length of cable has an attenuation of 27 dB , determine the power that must be transmitted at the sending end in order to measure 0.1 mW at the receiver end.
(10 marks)

