

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE (DBCE 13S/DA 13S)

AMA 2150: ENGINEERING MATHEMATICS I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

- Mathematical Table

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One

a) Solve the equation:

$$
\log _{4}(x-1)=\log _{4}(x+1)+\frac{1}{2}
$$

b) Find the sum for the following progression:

$$
13 \frac{3}{4}+11 \frac{3}{4}+9 \frac{3}{3}+\ldots \ldots .5 \frac{3}{4}-3 \frac{3}{4}
$$

c) Three consecutive numbers forming a G.P has a sum 14 and their product is 64 . Find the numbers
d) The sum of $3^{\text {rd }}$ and $5^{\text {th }}$ numbers for an AP is 8 . The $8^{\text {th }}$ term is twice the $4^{\text {th }}$ term. Determine the $6^{\text {th }}$ term.

Question Two

a) Sand is to be supplied weekly to a construction site in thousand tonnes forming the series; 950, 760, 608 and so on.

Find:
(i) Supply for the $10^{\text {th }}$ week
(ii) Supply by the end of $7^{\text {th }}$ week
(iii) The time when 10.95 thousand tonnes will be supplied to the site.

$$
y=c x^{m}
$$

b) An experiment was performed suggesting a law of the form (where c and m are constants). Results for the experiment were:

x	3.5	4.4	6.6
y	183	226	310

(i) Determine the law graphically
(ii) Find the value of y when $x=5$
(12 marks)

Question Three

a) A contractor borrows kshs 400,000 and repays in 20 equal monthly installments at a simple interest of 15%. Find the total interest to be repaid if interest is determined on reducing balance (8marks)

$$
\left(3-\frac{1}{2}\right)^{20}
$$

b) (i) Find the $8^{\text {th }}$ term in the binomial expansion of

$$
(8+0.4 y)^{\frac{1}{3}}
$$

(ii) Expand upto the term containing x^{3}

$$
\sqrt[3]{64.4} \quad y=\frac{1}{8}
$$

(iii) Using the expansion obtained in b (ii) evaluate by putting

Question Four

$$
1+\tan ^{2} x=\sec ^{2} x
$$

a) From first principles show that:
b) Solve the equation $\tan ^{2} x+\sec x=4$ for $0^{\circ} \leq x \leq 360^{\circ}$
(7 marks)

$$
z^{3}-j+1=0
$$

c) (i) Solve the equation giving the answer in the form a +bj
(ii) Represent the answer obtained in c(i) on a diagram

Question Five

$$
z_{1}=3 j, \quad z_{2}=4-2 j \quad z_{3}=-j+1 \quad\left|\frac{z_{1} \times z_{2}}{z_{3}}+z^{6}\right|
$$

a) Given find
b) The forces act at a point in the same plane as shown in figure 1

Figure 1
(i) Use complex number method to find the resultant force
(ii) Determine the direction of application for the resultant

