

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING

CERTIFICATE IN BUILDING \& CIVIL ENGINEERING (CBCE 13S)

AMA 1150: ENGINEERING MATHEMATICS I

END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Mathematical Table

This paper consists of FIVE questions. Answer any THREE questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One

a) Find the sum of the terms that form the progression:

$$
10+93 / 4+91 / 2+\ldots . . \cdot 1 / 4+0
$$

(6 marks)
b) The third term of an AP is twice the eighth term while sum of first twenty terms is twenty. Find:
(i) First term
(ii) Common difference
(iii) Number of terms after which the values become less than zero
c) Building stones are delivered monthly to a construction site in thousand tonnes forming the following series:
$6,520,3,912,2,347.2$, and so on.
Find:
(i) The delivery in the $8^{\text {th }}$ month
(ii) The time when 5 thousand tonnes will be delivered
(iii) Amount delivered if the supply continues indefinitely.

Question Two

a) Solve the equation:

$$
\log _{49}(x+2)+\log _{49} x=\frac{1}{2}
$$

(5 marks)
b) An assembly hall is designed to have 25 polygonal sides in an arithmetic progression of perimeter 1100 m . The longest side is 10 times shortest side. Find the length for the $5^{\text {th }}$ side.
(5 marks)

$$
y=K x^{a}
$$

c) Results from a laboratory test suggest a relationship of the form:
where K and a are constants. The data obtained is as follows:

	3.	4.	6.
x	5	4	6
	18	22	31
y	3	6	0

(i) Use graphical method to determine the relationship
(ii) Find the value of y when $x=5$
(10 marks)

Question Three

$$
\left(P-\frac{1}{q}\right)^{13}
$$

a) Find the $8^{\text {th }}$ term in the binomial expansion of:
(4 marks)
b) A builder borrows $\mathrm{K} £ 80,000$ and repays in 15 equal monthly installments at an interest of 12% on outstanding balance. Find the total interest paid.
$\frac{1}{\sqrt[4]{1-x}}$
c) (i) Expand up to the term containing x^{3}

$$
x=\frac{1}{81} \quad \frac{1}{\sqrt[4]{80}}
$$

(iii) By putting in the expansion obtained in c (i) evaluate correct to 4 decimal places.

Question Four

a) Show from first principles that for any triangle $A B C$:

$$
\begin{equation*}
\frac{a}{\sin A}=\frac{b}{\sin B} \tag{4marks}
\end{equation*}
$$

b) Solve for equation:

$$
\begin{equation*}
3 \sin \theta-4 \cos \theta=1 \text { for } 0^{\circ} \leq \theta \leq 360^{\circ} \tag{7marks}
\end{equation*}
$$

c) (i) Solve the equation:

$$
z^{2}-2 j-4=0 \quad \text { giving answer in the form } x+y j
$$

(ii) Represent the answer in c(i) on a diagram
(9marks)

Question Five

a) (i) Given r, θ find where
(ii) Express Z_{4} of a (i) in the form () and hence represent it on a diagram
b) (i) A train travels 200 km from station A at $\mathrm{N} 45^{\circ} \mathrm{W}$ to station B. It then covers 300 km to station C at $\mathrm{S} 60^{\circ} \mathrm{W}$. Finally it proceeds to station D at $\mathrm{S} 40^{\circ} \mathrm{E}$ covering 100 km . Use complex number method to determine the distance between stations A and D .
(ii) Determine the bearing of station D

