
 TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING DIPLOMA IN MERINE ENGINEERING (Y II S I)

EMR 2121: ENGINEERING MATHEMATICS III
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)
a) An arithmetic progression has thirteen terms whose sum is 143 , the third term is five. Determine:
(i) Common difference
(ii) First term
(6 marks)
b) A piece of equipment cost a factory ksh 600,000. If it depreciates in value, 15% the first year 13.5\% the second year, 12% the third year and so on. If these percentages are all applying to the original cost, determine the value of the equipment after 10 years.
c) A company predicts a yearly profit of ksh 120,000 in the year 2013 . The company predicts that the yearly profit will rise by 5% each year. Determine:
(i)

The predicted profit in 2016
(ii) The first year the predicted profit exceeds ksh 200,000
(iii)

The total profit from year 2013 to year 2023.
(12 marks)
d) The second term of a G.P is 24 and its sum to infinity is 100 . Find the two possible values of the common ratio.
(4 marks)

Question Two

a) Determine the inverse of the matrix:

$$
A=\left(\begin{array}{cc}
5 & -3 \\
-2 & 1
\end{array}\right)
$$

$$
A \bullet A^{-1}=I
$$

and hence show that
where A^{-1} in the inverse of matrix A , and I is the unit matrix. (5 marks)
b) A force system is analyzed and by resolving the forces horizontally and vertically the following equations are obtained:

$$
\begin{aligned}
& 6 F_{1}-F_{2}=5 \\
& 5 F_{1}+2 F_{2}=7
\end{aligned}
$$

(7 marks)
Use the inverse matrix method to solve for F_{1} and F_{2}
c) A vector system to determine the shortest distance between two moving bodies is analyzed, producing the following equations.

$$
\begin{aligned}
& 11 S_{1}-10 S_{2}=30 \\
& 21 S_{2}-20 S_{1}=-40
\end{aligned}
$$

use the determinants method to find the values of S_{1} and S_{2}.
Use the determinants method to find the values of S1 and S2
(8 marks)

Question Three

$$
O^{\circ}<\theta<360^{\circ}
$$

a) Sketch the curves for the following trigonometric functions for :

$$
y=\sin \theta / 2
$$

(i)

$$
y=\cos \theta / 2
$$

(ii)

$$
y=\tan \theta
$$

(iii)
b) A certain triangular template has the following side length $17 \mathrm{~cm}, 13 \mathrm{~cm}$ and 18 cm respectively. Determine the angles between the sides.
(9 marks)
$\theta \quad O^{\circ}<\theta<360^{\circ}$
c) Solve for in the equation for

$$
\sec ^{2}=3 \tan \theta-1
$$

Question Four

a) An arc of length 5.67 cm sub tends an angle of 2.15 radians to the centre of a circle. Determine:
(i) The diameter of the circle
(ii) The circumference of the circle
b) Find the angle in radians subtended at the centre a circle of diameter 23.0 mm by an arc of length 31.0 mm .
(4 marks)

$$
2 x^{2}+2 y 2-8 x+5 y+10=0
$$

c) For a circle defined by the equation . Determine:
(i) The radius
(ii) The coordinates of the centre
(10 marks)

Question Five

a) The earth's diameter is 12740 km . Determine the length of the arc on the greater circle of the earth that subtends 1° to the centre of the earth in nautical miles.
(4 marks)
b) Find the distance between points $\mathrm{P}\left(40^{\circ} \mathrm{N}, 50^{\circ} \mathrm{E}\right)$ and $\mathrm{Q}\left(20^{\circ} 30^{\prime} \mathrm{S}, 50^{\circ} \mathrm{E}\right)$ in:
(i) Nautical miles (Nm)
(ii) Kilometeres
c) A ship leaves Mombasa $\left(4^{\circ} \mathrm{S}, 39^{\circ} \mathrm{E}\right.$ and sails due east for 98 hours to a point $\mathrm{E}\left(4^{\circ} \mathrm{S}, 80^{\circ} \mathrm{E}\right)$ in the Indian ocean. Calculate its average speed in:
(i) $\mathrm{Km} / \mathrm{hr}$
(ii) Knots
(8 marks)

