

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN ELECTRICAL & ELECTRONICS ENGINEERING (DEPE2, DEAE2, DICE2)

AMA 2151: ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a) Prove by definition that:

$$\cosh^{2} x - \sinh^{2} x = 1$$
(3 marks)

$$\int_{3}^{2} \cosh^{-1} x dx$$
b) Evaluate
$$\begin{cases} \int_{3}^{2} \cosh^{-1} x dx \\ x + by + c = 0 \end{cases}
P = \frac{C}{\sqrt{a^{2} + b^{2}}}$$
c) (i) Prove that if P is the perpendicular distance of 0 from line then
 $3x = 4y - 7$
(i) Find the perpendicular distance of (2, -3) from (3 marks)
 $\int \frac{1}{\sqrt{(x^{2} + 2x + 10)}} dx$
(i) Find by completing the square and substituting (5 marks)
(ii) Integrate with respect to x (4 marks)
(ii) Integrate with respect to x (4 marks)
 $\int \sinh^{3} \theta d\theta$
f) Find (2 marks)
 $\int \sinh^{3} \theta d\theta$
f) Find the perpendicular distance of the point of intersection of the lines
 $2x - 3y + 4 = 0, x - 4y + 7 = 0$
from a line drawn through (2, 3) parallel to
 $y^{2} = 4ax$
 $yy_{1} = 2a(x + x_{1})$
(ii) Show that the equation of the tangent to the parabola at (x, y) is
 $f(x) = 5x^{2} - 3x + 1$
 $f(3) - f(2)$
(c) If , find the council of a council of the council of a marks)
(c) If $\int f(x) = 5x^{2} - 3x + 1$
 $f(3) - f(2)$
(c) If $\int f(x) = 5x^{2} - 3x + 1$
 $f(x) = 5x^{2} - 3x + 1$
 $f(x)$

d) Find the equation of a line which passes through the point (1, -7) and (1) makes 45° with the x-axis, (2) is horizontal (3) is vertical (4) also passes through (4, 5)
 (6 marks)

Question Three

10^{*x*} **a)** (i) Differentiate with respect to x (3 marks) $y = (x^2 + 1)(x^2 + 2)$ (ii) Find the gradient at the point (1, 6) on the curve (3 marks) $y = \sin\left(2 - 3x^2\right)$ **b)** Obtain the differential coefficient of (4 marks) $x^{2} + y^{2} - 2x - 6y + 5 = 0$ find $\frac{dy}{dx} = \frac{d^{2}y}{dx^{2}}$ **c)** If find and at x = 3, y = 2(4 marks) dy $y = \cos 2t, x = \sin t$ dx **d)** (i) find (3 marks) (ii) Differentiate with respect to x (3 marks) $y = e^{2x} \frac{\cos 3x}{\tan 4x}$

Question Four

a) Sketch the graph of the function:

$$y = \frac{48}{12 + x^2}$$
 and find the points of inflexion of the function (5 marks)

b) (i) Find
$$\int x \sqrt{(3x-1)} dx$$
 (6 marks)
$$\int_{0}^{\frac{\pi}{4}} \cos^{3} x \sin x dx$$

(ii) Evaluate

c) Using substitution
$$x = \sin u$$
, find:
 $\int \frac{1}{(1-x^2)} dx$

$$y^2 = x^2 (9 - x^2)$$

d) Find the total volume formed when $V = \int_{0}^{b} \pi v^{2dx}$

$$V = \int_a \pi y$$

given by

Question Five

(3 marks)

(3 marks)

(3 marks)

rotates round the x axis given that volume is

a) (i) Simplify

$$y = sh^{-1}\left(\frac{x}{a}\right)$$
(ii) Factorize

$$y = sh^{-1}\left(\frac{x}{a}\right)$$
(iii) Factorize

$$y = sh^{-1}\left(\frac{x}{a}\right)$$
(iv) Factorize

$$y = log\left(\frac{x + \sqrt{a^2 + x^2}}{a}\right)$$
(iv) first getting cosh y or otherwise
(4 marks)
(4 marks)
(5 marks)
(4 marks)
(5 marks)
(4 marks)
(5 marks)
(6 marks)
(6 marks)
(7 marks)
(8 marks)
(8 marks)
(9 marks)
(9

d) Find an expansion for in terms of trigonometric and hyperbolic function of x and y (4 marks)