TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
CERTIFICATE IN:
BUILDING \& CIVIL ENGINEERING MECHANICAL ENGINEERING ELECTRICAL \& ELECTRONIC ENGINEERING

AMA 1151: ENGINEERING MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
A=3 / 4 \quad \tan B=12 / 5 \quad \sin (A+B), \tan (A+B)
$$

a) If and where A and B are acute angles, find and $\cos 2 B$

$$
\cot 2 \theta=3 \quad \frac{\sin \theta \cos \theta}{\sin 2 \theta-\cos 2 \theta}
$$

b) Given that , find without using tables:
c) Express $(-5,-12)$ in polar coordinates

$$
\frac{7 x^{2}+5 x+3}{\left(x^{2}+2\right)(x+1)}
$$

d) Resolve
into partial fraction
(5 marks)

$$
y=2 x^{3}+3 x^{2}-2 x-3
$$

e) Find the equation of the tangent to the curve
(4 marks)

$$
x=2 t^{3}+3 t^{2}-6 t+2
$$

f) The distance x metres moved by a body in a time t seconds is given by velocity and acceleration in term of t and find their values when $t=4$ seconds
g) Differentiate $\sin \mathrm{x}$ from first principles

Question Two

$$
y=\frac{2 x^{3}}{3}-5 x+12 x-7
$$

a) Find the coordinates of the maximum and minimum values of the graph of distinguish between them.

> and
b) Differentiate $\cos x$ from first principles

$$
z_{1}=5-6 j \quad z_{2}=3+2 j \quad \frac{z_{1} z_{2}}{z_{1}+z_{2}}
$$

c) If and , determine in a simplified form where $a+j b$ has ' a ' as the real term and ' jb ' as the imaginary term.

$$
y=4 x^{3}-3 x^{2}+2 x-4
$$

d) Determine the gradient of the curve

$$
\text { at point }(1,-1)
$$

Question Three

$$
d y / d x
$$

a) Find $\begin{aligned} & \text { for: } \\ & y=\sin x^{3}\end{aligned}$
(i)

$$
y=\left(x^{2}+1\right)^{3}
$$

(ii)
(4 marks)
b) A rectangular area is formed using a piece of wire 36 cm long. Find the length and breadth of the rectangle if it is to enclose the maximum possible area.
c) If the distance x metres travelled by a car in time t seconds after the breaks are applied is given by $x=15 t-5 / 3 t^{2}$
(i) What is the speed (in km / h) at the instant the breaks are applied
(ii) How far does the car travel before it stops
d) Find the roots of ${ }^{23}-1=0$ and represent them in an Argand diagram.

Question Four
$z_{1}=6<45^{\circ} \quad z_{2}=4<-30^{\circ}$
a) If
and
Find:
(i)

$$
\begin{aligned}
& z_{1} z_{2} \\
& z_{1} / z_{2}
\end{aligned}
$$

(ii)

$$
\frac{11-3 x}{x^{2}+2 x-3}
$$

b) Solve into partial fractions
c) Differentiate the following with respect to x :

$$
y=x^{2} \sin x
$$

(i)

$$
y=\frac{x^{3}+\sin x}{\sqrt{x^{2}+1 / x^{2}}}
$$

(ii)
$d y / d x \quad y=3 x \quad$ for \quad from first principles.

Question Five

a) A room 9 m wide has a span roof which slopes at 32° on one side and 41° on the other. Determine the length of the roof slopes.
b) Sketch the curves for the following trigonometric functions between 0° and 360° :

$$
y=\cos x
$$

(i)
$y=\sin x$
(ii)

$$
y=\tan x
$$

(iii)
marks)
c) Express in Cartesian form:
(i) $8<150^{\circ}$
(ii) $3.6<-25^{\circ}$
d) A man climbs a hill 500 m high with a slope of 12° from the ground level. Determine the distance, the man walks

