TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
CERTIFICATE IN MECHANICAL ENGINEERING (Y1 SII)

AMA 1150: ENGINEERING MATHEMATICS
END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) A stone thrown vertically upwards covers a distance defined by the equation:

$$
s=3+14 t-1 / 2(10) t^{2}
$$

where S is distance in metres and t is time in seconds. Determine:
(i) The time it takes to reach maximum height
(ii) How high it reaches
(iii) The total time it takes between the time it is thrown to the time it gets back to the thrower.

$$
\theta \quad \cos ^{2} \theta+2 \sin \theta+1=0
$$

b) Solve for in the trigonometric equation
c) Determine the angles in a triangular template of sides $6.42 \mathrm{~cm}, 8.31 \mathrm{~cm}$ and 9.78 cm
d) Differentiate from first principles:

$$
\begin{equation*}
y=3 x^{2} \tag{8marks}
\end{equation*}
$$

Question Two

a) In a G.P series, the eighth term is eight times the fifth and the sum of the sixth and the seventh term is 288. Determine:
(i) The common ratio
(ii) The first term
b) Show that the sum of the first n terms of an arithmetic progression with first term as ' a ' and common difference as ' d ' is:

$$
S n=\frac{n}{2}(2 a+(n-1) d)
$$

c) The eighth term of an arithmetic progression is twice the third term and the sum of the first eight terms is 39 .
(i) Determine the first three term

$$
S_{n}=\frac{3 n}{8}(n+5)
$$

(ii) Show that the sum of the first n-terms
a) Sketch the curves for following trigonometric functions between 0° and 360°

$$
y=\cos x
$$

(i)

$$
y=\sin x
$$

(ii)

$$
y=\tan x
$$

(iii)
(6 marks)
b) A man leaves a town walking at a steady speed of $6 \mathrm{~km} / \mathrm{hr}$ in the direction $\mathrm{S} 30^{\circ} \mathrm{W}$. Another man leaves the same town cycling at a steady speed in a direction $\mathrm{S} 23^{\circ} \mathrm{E}$. After 4.0 hours the two men are 100 KM a part. Determine the speed of the cyclist.
(8 marks)
c) A room 9 m wide has a span roof which slops at 32° on one side and 41° on the other. Determine the length of the roof slopes.
(6 marks)

Question Four

$$
z=\frac{1+j 3}{1-j 2}
$$

a) Given , evaluate z^{2} in the form $a+j b$
b) Express in polar form:

$$
-5+j
$$

$$
\begin{equation*}
+4+j 3 \tag{i}
\end{equation*}
$$

(ii)
b) Express in Cartesian form:

$$
8<150^{\circ}
$$

(i)

$$
3.6<-25^{\circ}
$$

(ii)
(10 marks)
c) Find the magnitude and direction of the resultant of the forces:

$$
\begin{align*}
& F_{1}=(3-j 17) \\
& F_{2}=(10-j 2) \text { Newtons } \\
& F_{3}=-8+j 2 \text { Newtons } \\
& \text { Newtons }
\end{align*}
$$

Question Five

a) A mould for a family loaf is to take the shape of rectangle with a semi-cylindrical roof with 10 cm width, 18 cm long and 12 cm high excluding the cylindrical portion. Sketch the mould and determine its volume.
(6 marks)

$$
\frac{d y}{d x}
$$

b) Determine given

$$
y=\frac{2 \sin x}{x^{2}}
$$

(i)

$$
y=2 x^{2} e^{2^{x}}
$$

(ii)
(9 marks)

$$
y=4 x^{3}-3 x^{2}+2 x-4
$$

c) Determine the gradient of the curve

$$
\text { at point }(1,-1)
$$

$$
\frac{d y}{d x} \quad y=13-\frac{3}{2 x}
$$

d) Find given
(2 marks)

