

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS

CERTIFICATE IN MECHANICAL ENGINEERING (CME - Y1 S 1)
AMA 1150: ENGINEERING MATHEMATICS I
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination
Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages
Question One (Compulsory)
a) Evaluate the following:

$$
\frac{\frac{2}{3} \div \frac{7}{3}}{\frac{2}{3}+\frac{5}{6}} \div \frac{1}{2}
$$

(i)

$$
\frac{\frac{1}{4}+\frac{1}{5} \div \frac{1}{2} \text { of } \frac{1}{3}}{\frac{1}{2} \text { of }\left(\frac{4}{5}-\frac{3}{4}+\frac{1}{2}\right)}
$$

(ii)
(4 marks)

$$
A=\frac{C}{\sqrt{(c-b)(c+b)}}
$$

b) If , make b the subject of the formula and hence evaluate A^{2} if $C=2 b$
(4 marks)
c) Express each of the following as a single fraction in its simplest form.

$$
\dot{5} 2 \dot{3}
$$

(i) 11 .

$$
\frac{\frac{14}{16}-r}{\frac{7}{8}-\left(\frac{r}{r+2}\right)}
$$

(ii)

$$
\frac{x-2}{x+2}-\frac{x+2}{x-2}
$$

(iii)

$$
\frac{a+3 c}{b+3 d}=\frac{7 a-5 c}{7 b-5 d}
$$

d) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and b are in continued proportion, prove that

Question Two

a) (i) Derive the quadratic equation formular.
(ii) A proper fraction is such that the denominator exceeds the numerator by 3. If both the numerator and the denominator are reduced by 2 , the fraction is decreased by $1 / 8$. Find the fraction.
(5 marks)
b) Factorize completely each of the following expressions:

$$
w^{4}-t^{4}+t^{2}+w^{2}
$$

(i)

$$
\frac{1}{x^{2}}-\frac{4}{x}+4
$$

(ii)
c) Solve the following simultaneous equation

$$
\begin{aligned}
& 3 x+y=10 \\
& \frac{1}{x}+\frac{1}{y}=\frac{3}{4}
\end{aligned}
$$

Question Three

$$
\frac{a \sqrt{a}+1}{\sqrt{a}-1}
$$

a) (i) Rationalize the denominator of

$$
\frac{1}{(1+\sqrt{3})^{2}}+\frac{1}{(1-\sqrt{3}) 2}
$$

(ii) Without using tables, evaluate

$$
s=\sqrt{3}+4 \quad t=\sqrt{3}-4
$$

b) If and , find the values of:
(i) 2 st
(ii) $s^{2}-t^{2}$
$\begin{array}{lll}s^{2}+2 s & s=\sqrt{5} & \sqrt{s}=2.24\end{array}$
(iii) Evaluate if and
c) Simplify:

$$
\frac{16^{x+1}+20\left(4^{2 x}\right)}{2^{x-3} \times 8^{x+2}}
$$

(i)

$$
\frac{\left(a^{3} b^{1 / 2} c^{-1 / 2}\right)(a b)^{1 / 3}}{\sqrt{a^{3}} \sqrt{b}}
$$

(ii)
d) Solve:

$$
2^{2 x}-3\left(2^{x}\right)+2=0
$$

(i)

$$
2^{2 x+1}+4\left(2^{x}\right)-3=0
$$

(ii)

Question Four

$$
\frac{\log 343-\log 125}{\log \left(\frac{49}{25}\right)}
$$

a) (i) Evaluate without using tables

$$
\log _{7} 3=0.5646 \quad \log _{7} 15=1.3917
$$

(ii) Given that and , evaluate without using tables or calculator, $\log _{7} 0.125$
b) Solve the following equations:

$$
\begin{aligned}
2 \log y & =\log 2+\log x \\
2^{y} & =4^{x}
\end{aligned}
$$

(i)

$$
\left(\log _{10} x\right)^{2}=3-\log _{10} x^{2}
$$

(ii)
(8 marks)

$$
a^{-n}=\frac{1}{a^{n}}
$$

c) (i) Prove that

$$
\log _{2} y=2-\log _{2} x
$$

(ii) Given that express y in terms of x .

Question Five

a) In the figure below, 0 is the centre of the circle radius 10 cm . Angle $\mathrm{AOB}=80^{\circ}$. Find:

Figure 1
(i) The perimeter of the major arc

$$
\pi=22 / 7
$$

(ii) The area of the shaded segment (Take
b) The ends of the roof of a workshop are segments of a circle of radius 10 m . The roof is 20 m long. The angle at the centre of the circle is 120°

Figure 2

Calculate:

(i) The area of one end of the roof
(ii) The area of the curved surface of the roof
(iii) Find the cost of covering the two ends and curved surface with galvanized iron sheets casting sh 400 per square metre.

