

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSISCS

DIPLOMA IN TELECOMMUNICATION ENGINEERING

AMA 2101: ENGINEERING MATHEMATICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator
- SMP Table

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a)	Given (i) (ii)	$\log_2 = 0.3010$ that , calculate: $\log 5$ $\log 0.125$	
		Using laws of logarithms	(4 marks)
b)	Solve (i)	the following equations: $8x^2 + 2x - 15 = 0$ by completing the square.	(3 marks)
	(ii)	3x + 4y + z = 10 2x - 3y + 5z = -9 x + 2y - z = 6	(E manks)
			(5 marks)
c)	(i) Us	e binomial theorem to determine $\sqrt{(1.05)}$ correct to 4 decimal places.	(3 marks)
d)	(ii) In (i) Eva	how many ways can an escort of four soldiers be selected from nine soldiers? $j\left(\frac{1+j3}{1-j2}\right)^{2}$ aluate	(2 marks) (4 marks)
	(ii) Solve the complex equation for a and b.		
0)	(i) Evr	$(2 - j3) = \sqrt{(a + jb)}$	(3 marks) (3 marks)
e)	(1) EX		(5 marks)
	(ii) Us	$\cos(90^{\circ} + A) = -\sin A$ e the addition formula to show that	(3 marks)
Qı	lestion '	Гwo	
a)	Conve	$7 < -145^{\circ}$ rt into rectangular form of a complex number	(4 marks)
b)	Expres	$(-14 + j3)^{-2/5}$ s the roots of in polar form	(6 marks)

c) Determine the resistance and series inductance or capacitance for each of the following impedances, assuming a frequency of 50Hz.

(i)
(i)

$$-\sqrt{20}\Omega$$

(ii)
(3 marks)
(3 marks)
(3 marks)

Question Three

a)	(i) Given the equations x^3	$^{2} = 41.15$. Solve for, correct to 4 significant figures.	(4 marks)
	$-5x^2+6x-1=0$ (ii) Solve	0 by using the quadratic formula.	(4 marks)
b)	Given the following equati 4x + 8y + 4z = 80	ons:	
	2x + y - 4z = 7		
	3x - y + 2z = 22		

Solve the equations by Cramer's rule

Question Four

4 sec² θ = 3 tan θ + 5 **a)** (i) Determine all the angles which satisfy the equation

(5 marks)

(12 marks)

$$\tan \theta = \frac{4}{3} \qquad 0^{\circ} < \theta < 360^{\circ} \qquad \tan \frac{1}{2} \theta$$
(ii) If where determine without tables the possible values of and $\sin \frac{1}{2} \theta$
(7 marks)

b) (i) Using surd forms, evaluate:

$3 \tan 60^\circ - 2 \cos 30^\circ$	
tan 30°	(4 marks)
$\frac{1 + \cot \theta}{1 + \tan \theta} = \cot \theta$	
(11) Prove that	(4 marks)
© 2014 – Technical University of Mombasa	Page 3

Question Five

 $(2a - 3b)^{5}$

a) Using the binomial series determine the expansion of

(4 marks)

- **b)** The radius of a cylinder is reduced by 4% and its height is increased by 2%. Determine the approximate percentage change in:
 - (i) Its volume
 - (ii) Its curved surface area neglecting the products of small quantities (12 marks)

$$\frac{1}{\sqrt{1-2t}}$$

c) Expand in ascending powers of t as far as the term is t^3 . (4 marks)