

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN TELECOMMUNICATION ENGINEERING

AMA 2101: ENGINEERING MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Calculator
- SMP Table

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\log _{2}=0.3010
$$

a) Given that , calculate:
(i) $\log 5$
(ii) $\log 0.125$

Using laws of logarithms
(4 marks)
b) Solve the following equations:

$$
8 x^{2}+2 x-15=0
$$

(i) by completing the square.
(3 marks)
(ii)

$$
\begin{aligned}
& 3 x+4 y+z=10 \\
& 2 x-3 y+5 z=-9 \\
& x+2 y-z=6
\end{aligned}
$$

$$
\sqrt{(1.05)}
$$

c) (i) Use binomial theorem to determine correct to 4 decimal places.
(ii) In how many ways can an escort of four soldiers be selected from nine soldiers?

$$
j\left(\frac{1+j 3}{1-j 2}\right)^{2}
$$

d) (i) Evaluate
(ii) Solve the complex equation for a and b .

$$
\begin{equation*}
(2-j 3)=\sqrt{(a+j b)} \tag{3marks}
\end{equation*}
$$

e) (i) Express $\sin 1220^{\circ}$ in terms of the trigonometical ratios of positive acute angles.

$$
\cos \left(90^{\circ}+A\right)=-\sin A
$$

(ii) Use the addition formula to show that

Question Two

$$
7<-145^{\circ}
$$

a) Convert into rectangular form of a complex number
$(-14+j 3)^{-2 / 5}$
b) Express the roots of
in polar form
c) Determine the resistance and series inductance or capacitance for each of the following impedances, assuming a frequency of 50 Hz .

$$
(4.0+57.0) \Omega
$$

(i)

$$
\begin{equation*}
-\sqrt{20} \Omega \tag{3marks}
\end{equation*}
$$

(ii)
(3 marks)

$$
15<-60^{\circ} \Omega
$$

(iii)

Question Three

$$
x^{3.2}=41.15
$$

a) (i) Given the equations . Solve for, correct to 4 significant figures.

$$
-5 x^{2}+6 x-1=0
$$

(ii) Solve by using the quadratic formula.
b) Given the following equations:

$$
\begin{aligned}
& 4 x+8 y+4 z=80 \\
& 2 x+y-4 z=7 \\
& 3 x-y+2 z=22
\end{aligned}
$$

Solve the equations by Cramer's rule

Question Four

$$
4 \sec ^{2} \theta=3 \tan \theta+5
$$

a) (i) Determine all the angles which satisfy the equation

$$
\tan \theta=4 / 3 \quad 0^{\circ}<\theta<360^{\circ}
$$

(ii) If where determine without tables the possible values of $\sin 1 / 2 \theta$
b) (i) Using surd forms, evaluate:

$$
\begin{gathered}
\frac{3 \tan 60^{\circ}-2 \cos 30^{\circ}}{\tan 30^{\circ}} \\
\frac{1+\cot \theta}{1+\tan \theta}=\cot \theta
\end{gathered}
$$

Question Five

$$
(2 a-3 b)^{5}
$$

a) Using the binomial series determine the expansion of
b) The radius of a cylinder is reduced by 4% and its height is increased by 2%. Determine the approximate percentage change in:
(i) Its volume
(ii) Its curved surface area neglecting the products of small quantities

$$
\frac{1}{\sqrt{1-2 t}}
$$

c) Expand in ascending powers of t as far as the term is t^{3}.

