THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SC. IN MECHANICAL \& AUTOMOTIVE ENGINEERING

EMG 2414: NUMERICAL METHODS FOR ENGINEERS
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

> Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One (30 marks)
$L=2 D^{2}+3 D+2 \quad f_{1}(t)=t^{3}, f_{2}(t)=\sin t ; \quad L\left[3 f_{1}(t)+4 f_{2}(t)\right]$
a) Given that and evaluate
(5 marks)
b) The velocity of a car accelerating at uniform acceleration ${ }^{\alpha}$ between two points is given by $V=u+a t$
where U is its velocity when passing the first point and t is the time taken to pass between
the two points. If $V=21 \mathrm{~m} / \mathrm{s}$ when $t=3.5 \mathrm{~s}$ and $V=33 \mathrm{~m} / \mathrm{s}$ when $t=6.1 \mathrm{~s}$. Use determinants to find the value of U and ${ }^{\alpha}$. Correct to 4 significant figures. marks)
c) Solve the following simultaneous equations using Cramer's Rule.

$$
\begin{aligned}
& x+y+z=4 \\
& 2 x-3 y+4 z=33 \\
& 3 x-2 y-2 z=2
\end{aligned}
$$

d) Solve by Taylor's series the differential equation $x y^{\prime}=x-y \quad y(2)=2 \quad x=2.1$,
e) Solve simultaneously the system:

$$
\begin{aligned}
& \frac{d x}{d t}=4 x-y \\
& \frac{d y}{d t}=x+2 y
\end{aligned}
$$

using the method of undetermined coefficients.
(7 marks)

$$
I=\int_{0}^{1} \frac{d x}{1+x}
$$

$$
h=0.25
$$

f) Find the approximate value of
with step siz using the trapezoidal rule.
(6 marks)

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

a) Applying Kirchhoff's Laws to an electric circuit, results in the following equations, $(9+12 j) I_{1}-(6+8 j) I_{2}=5 \quad-(6+8 j) I_{1}+(8+3 j) I_{2}=(2+4 j)$
and solve by matrix method the equations for $I_{1} I_{2}$.

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

b) Estimate correct to two decimal places using Trapezoidal rule.
(8 marks)
c) Apply the classical fourth order Runge-Kutta method to approximate the solution to the initial value

$$
\frac{d y}{d t}=\left(\frac{y}{t}\right)^{2}+\left(\frac{y}{t}\right) \quad 1 \leq t \leq 1.2 \quad h=0.1
$$

problem and (8 marks)

Question Three (20 marks)

$$
\left[\begin{array}{cc}
1+i & i^{2} \\
-i^{3} & 1-4 i
\end{array}\right]
$$

a) Evaluate the determinant of

$$
\int_{4.0}^{5.0} \log _{e} x d x
$$

b) Use the trapezium rule hence the Rombers method to solve
c) Use the augmented matrix method to obtain the inverse matrix of A .

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
3 & -1 & 2 \\
2 & 2 & 3
\end{array}\right)
$$

Question Four (20 marks)

$$
\left[\begin{array}{ll}
5<30^{\circ} & 2<-60^{\circ} \\
3<60^{\circ} & 4<-90^{\circ}
\end{array}\right]
$$

a) Evaluate the determinant of

$$
\frac{d y}{d x}=-y \quad y(0)=1 \quad h=0.01
$$

with condition and the
b) By Euler's method solve the differential equation $n=3$.
up to
c) Using row reduction find values of the 3 forces in a system related by the simultaneous equations.

$$
\begin{aligned}
& F_{1}-2 F_{2}+3 F_{3}=7 \\
& -F_{1}+F_{2}-2 F_{3}=-5 \\
& 2 F_{1}-F_{2}-F_{3}=4
\end{aligned}
$$

d) A body starts from rest and its velocity is measured every second for 8 seconds as follows:

Time (s)	0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
Velocity (m/s)	0	0.4	1.0	1.7	2.9	4.1	6.2	8.0	9.4

$\int_{0}^{8.0} v d t$
If the distance moved is given by
Question Five (20 marks) estimate the integral using Simpson's rule (4 marks)

$$
\frac{d y}{d x}=y+x^{2}
$$

a) Use the Euler's modified method to determine the value of y given that $\mathrm{y}(0)=1$. If and $h=0.05$
(5 marks)
b) Use Simpson's rule to approximate

$$
\frac{d x}{d t}=3 x+2 y
$$

c) Solve simultaneously the system

$$
\frac{d y}{d t}=-5 x+y
$$

(11 marks)

