

TECHNICAL UNIVERISTY OF MOMBASA KWALE CAMPUS

Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION COMMUNICATION TECHNOLGY (DICT II)

EEE 2135: ELECTRONICS

END OF SEMESTER EXAMINATION SERIES: OCTOBER 2014

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
- Answer Booklet
This paper consists of **FIVE** questions.

Attempt question **ONE** (Compulsory) and any other **TWO** questions

Maximum marks for each part of a question are as shown

This paper consists of FOUR printed pages

Question One (Compulsory)

- **a)** (i) With the aid of a diagram, explain the operation of an electronic capacitor.
 - (ii) For two capacitors connected in parallel show that total capacitance, CT is given by:

$$C_T = C_1 + C_2$$

(10 marks)

- **b)** For the circuit shown in figure 1, calculate:
 - V_{AB} (i)
 - V_{BA} (ii)
 - (iii) V_{AC}
 - (iv) V_{CD}

(10 marks)

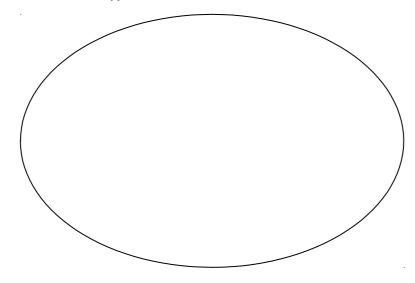
Question Two

- a) (i) Explain any TWO factors that affect the Q point of a transistor amplifier.
 - (ii) State how the factors in a(i) can be minimized.

(4 marks)

b) Explain the term 'thermovunaway as applied to semiconductor diode.

(5 marks)


- **c)** (i) For the circuit shown in figure 1, determine the following:
 - (i) Collector curleur

(7 marks)

- (ii) V_{R1}
- (iii) V_{CE}
- (iv) I_B

(Assume $V_{BE} = 0.6V$ and B = 100)

(ii) Calculate the new value of c(i) if the resistor of 1K $\,$ is connected between emitter and ground.

d) Explain how DC stabilization is a achieved in an amitter feedback biasing circuit. (4 marks)

Question Three

- **a)** (i) State any THREE methods of biasing a transistor.
 - (ii) State TWO purposes for each of the following:
 - (i) DC loadline
 - (ii) AC loadline

(7 marks)

b) The characteristics of a BJT are given table 1. The transistor has a collector load of 1500 $^{\circ}$, a μ

supply voltage of 6v and a bias of 40 A

- (i) Plot the output characteristics
- (ii) Draw the DC loadline
- (iii) Calculate the power dissipated by the transistor

μ

(iv) Calculate the total voltage swing at the collector for an AC input signal current of 40 A at the base:

VCE	Collector Current I _C (mA)		
	1b = 0	μ	μ
		1B = 40 A	1b = 80 A
1	0.2	1.900	3.7
4	0.3	2.05	4.0
7	0.4	2.20	4.3

Table 1

Question Four

- **a)** Define the following terms as applied to power supplies:
 - (i) Ripple
 - (ii) PIV
- **b)** (i) Draw the circuit diagram of a full wave bridge rectifier and explain its operation with the aid of a wave forms.
 - (ii) State any TWO advantages of the full wave bridge rectifier over the centre-tapped
 - (iii) With the aid of a circuit diagram, explain the operation of a zener diode regulator when:
 - (i) the load varies
 - (ii) The input voltage varies

(12 marks0

Draw a data flow diagram for the following description.

- **c)** A 5.6v, 1W Zener diode having a minimum current of 5mA is used in a shunt regulator to supply a constant load current of 20mA from a supply which varies between 15V to 24V. Calculate:
 - (i) Suitable value of the series resistor, Rs
 - (ii) Power rating of Rs in C(i)
 - (iii) Power dissipated by the Zener diode when the supply is at its maximum 6 marks.

Question Five

- **a)** State any TWO differences between NPN and PNP transistor.
- **b)** In figure 4, calculate:
 - (i) VB
 - (ii) VE
 - (iii) IB
 - **(iv)** IE
 - **(v)** IC
 - (vi) VC

(12 marks)

c) For BJT, show that:

$$\beta = \frac{\alpha}{1 - \alpha}$$

(6 marks)