

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS (BTRE 13S/BTAP 13S)

APS 4202: ELECTRICITY & MAGNETISM II

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: JUNE 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of **FOUR** questions Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Data:

 $u_o = 4\pi \times 10^{-7} Am^{-1}$

Permeability of free space,

 $\varepsilon_{o} = 8.85 \times 10^{-12} Fm^{-1}$

Permiltively of free space $1.602 \times 10^{-19} C$

Electron charge z = Mass of electron me = 9.11 x 10-31kg

Proton mass mp = 1.67×10^{-17} kg

Question One (Compulsory)

a) (i) A uniform electric field is set up within parallel plate conductor of plate separation d and potential difference V, An electronic charge q of mass m is released on the negative plate. Determine the acceleration of the electronic charge q within the plate (3 marks)

(ii) Hence show that the final velocity of the charge in (i) above is:

$$V = \sqrt{\frac{2qV}{m}}$$

 $\stackrel{
ightarrow}{H}$

b)	A solid wire of radius R carries a current I. Determine the magnetic field intensity where:	at the radius r			
	(i) $r > R$ and (ii) $r < R$	(2 marks) (3 marks)			
	$rac{2\piarepsilon}{\ln\left(rac{b}{a} ight)}$				
c)		re a and b are the (5 marks)			
d)	Using the atomic current loop model derive an expression for the magnetization M magnetized rod	f for a uniformly (4 marks)			
e)	Find the total reluctance and permeance rectangular iron blocks shown in figure 1, a $\mu_1 = 500$, uniform in each permeability in each block is uniform, the value in block 1				
	$\mu_2 = 2000\mu_o$ being	(6 marks)			
f)	Compute the inductance of a solenoid of 2000 turns wound uniformly over a length of 500mm on a $\mu = u_{o}$				
	cylindrical paper tube 40mm in diameter (The medium is air,)	(4 marks)			
Question Two					
a)	State Ampere's Law and use it to explain magnetomotance, F	(4 marks)			
b)	(i) Explain the term 'atomic current loop and define atomic magnetic moment'	(3 marks)			
	(ii) Show that when a magnetic field \vec{B} is applied to the atomic loop, there is a tom $\vec{T} = \vec{m} \times \vec{B}$	rque \vec{T} tending to			
	align the moment of the atomic loop with the field given by $I = II \times B$	(5 marks)			
c)	Describe briefly the following magnetic behavior exhibited by material giving examp (i) Diamagnetic (ii) Paramagnetic (iii) Ferromagnetic marks)	oles of each: (2 marks) (2 marks) (2			

© 2015 – Technical University of Mombasa

Question Three

•		→	_ `	
	Q_{m}	$\stackrel{\rightarrow}{B}$	$\stackrel{\rightarrow}{B}$	
a)	A bar magnet of pole strength and length L is placed in a uniform	field to wit	h . Show that	
	\vec{T} $\vec{T} = Q_m Lb \sin \theta$			
	the torque on the bar magnet is given by		(5 marks)	
b)	(i) Derive the expressions for magnetic energy Wm, stored in an inducto	or	(4 marks)	
	(ii) Hence use the concept of field cells to shown that the magnetic energy $W_m = \frac{1}{2} \mu H^2$	gy density in t	he conductor is	
	given by		(5 marks)	
c)	A very long solenoid with 2 x 2 cm2 cross-sectional area has an iron c per metre. It carries a current of 500mA find: (i) Its inductance per metre (ii) The energy density stored in its field		and 4000 turns (3 marks) (3 marks)	
Question Four				
a)	(i) Give the wave equation in H_z and propagating along x direction	((1 mark)	
	(ii) Relate the wave velocity to permeability and permittivity and	((2 marks)	
	(iii) Hence compute the speed of electromagnetic waves vacuo		(2 marks)	
	$E_{y} = E_{o} \cos(\omega t - \rho x)$			
b)	An electromagnetic wave is given by the equation (i) The direction of the propagation (ii) The velocity of the wave (iii) The wavelength of the wave		(2 marks) (2 marks) (2 marks)	

c) Derive the transmission line wave equations and use them to obtain the characteristic impendence of an infinite uniform transmission line **(9 marks)**