

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF MEDICAL ENGINEERING

DIPLOMA IN MEDICAL ENGINEERING (Y1 S2)

EEP 2152: ELECTRICAL ENGINEERING SCIENCE

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions. Answer question ONE (compulsory) and any other TWO questions

Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a)	Define the term "RMS current"	(1 marks)
	Ω μF	
b)		apacitor. The circuit is (17 marks)
c)	Two identical coils are connected such that the total inductance is either 17.the mode of connection. Determine:(i) The value of inductance of each coil(ii) The mutual inductance between the coils	5H or 7.5H, depending on (10 marks)
d)	State the standard: (i) Single-phase voltage (ii) Power supply frequency in Kenya	(2 marks)
Qu	lestion Two	
a)	State "Ohm's law"	(1 mark)
b)	Describe: (i) Conductor (ii) Semi-conductor (iii) Insulator; and give ONE example in each case	(9 marks)
c)	Ω	anno registore have an
C)	The equivalent resistance for two resistors connected in parallel is 6 Ω . The Ω effective resistance of 25 when connected in series. Calculate the ohmic resistors	
Qu	lestion Three	
a)	An alternating current is given by: <i>i</i> = 141.4 sin 314 <i>t</i> Find: (i) The maximum value (ii) Frequency (iii) Time period (iv) The instantaneous value when t is 3ms	(7 marks)

Page 2

μF

c) A 318 capacitor is connected across a 230V, 50Hz system. Determine:

- (i) The capacitive reactance
- (ii) r.m.s value of current
- (iii) equations for voltage and current (12 marks)

Question Four

- a) Define the term "magnetic flux density" (1 mark)
 b) State the difference between primary cells and secondary cells (1 mark)
- c) A straight wire 0.5m long carries a current of 100A and lies at right-angles to a uniform field of 1.5T. Calculate the mechanical force on the conductor when:
 - (i) it lies in the given position
 - (ii) it lies in a position such that it is inclined at an angle of 30° to the direction of field
- α Ω
 A
 A
 C
 A
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C</li

(12 marks)

(6 marks)

Question Five

a) A mica dielectric parallel-plate capacitor has 21 plates each having an effective area of 5cm² and each separated by a gap of 0.005mm. Calculate the capacitance. Take the relative permittivity of mica as 6.

(3 marks)

b) With the aid of a labeled diagram, explain the principle of operation of a single-phase transformer.

(9 marks)

- c) A 2000/200V, 20KVA transformer has 66 turns in the secondary. Calculate:
 - (i) Primary turns
 - (ii) Primary and secondary full-load currents. Neglect losses (8 marks)