

# TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

DIPLOMA IN AUTOMOTIVE ENGINEERING DIPLOMA IN MECHANICAL ENGINEERING (POWER OPTION) (DMPE 2 & DAE 2)

EEE 2102: ELECTRICAL ENGINEERING SCIENCE

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer booklet This paper consists of FIVE questions. Answer any THREE questions All questions carry equal marks Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One** 

**a)** (i) Show that for four resistors connected in series:

$$R_{T} = R_{1} + R_{2} + R_{3} + R_{4}$$

(5 marks)

(ii) Show that for four resistors connected in parallel:

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$
(5 marks)

- **b)** For the circuit of figure 1 below, calculate using superposition theorem:
  - (i) The current
  - (ii) Power dissipated by the  $20\Omega$  Resistors.





### (16 marks)

### **Question** Two

A steel ring of mean circumference 400mm cross-sectional area 500mm<sup>2</sup> and a Relative Permeability of 1600 has a coil of 300 tums wound uniformly around it. Calculate the Reluctance of the ring and hence the current required to produce a flux of 600µWb in the ring. (20 marks)

## **Question Three**

- (a) When an alternating Emf is applied to a circuit the current produced laggs the emf by 75°. Illustrate the above statement by means of wave and phasor diagram. (4 marks)
- (b) A single phase A.C supply of 240V, 50Hz is applied to a series circuit consisting of a pure inductor of 0.06H and a non-inductive resistor of 50Ω. Calculate:
  - (i) The impedance of the circuit (4 marks)

| (ii)  | The current in the circuit.                                  | (4 marks) |
|-------|--------------------------------------------------------------|-----------|
| (iii) | The potential difference (p.d) across inductor and resistor. | (4 marks) |
| (iv)  | Draw the phasor diagram                                      | (4 marks) |

#### **Question Four**

| (a) Define the f | following magnetic | Quantities: |
|------------------|--------------------|-------------|
|------------------|--------------------|-------------|

| (i)   | Magnetic field            | (2 marks) |
|-------|---------------------------|-----------|
| (ii)  | Magnetic flux Q           | (2 marks) |
| (iii) | Magnetic flux density (B) | (2 marks) |
| (iv)  | Magnetomotive force (mmf) | (2 marks) |
| (v)   | Reluctance (s)            | (2 marks) |

(b) State the equivalent magnetic quantities of the following electric quantities:

| (i)   | Current (I)                | (2 marks) |
|-------|----------------------------|-----------|
| (ii)  | Resistance (R)             | (2 marks) |
| (iii) | Electromotive force (Emf)  | (2 marks) |
| (iv)  | Absolute permittivity (ε)  | (2 marks) |
| (v)   | Relative permittivity (µr) | (2 marks) |

#### **Question Five**

- a) Define capacitance.
- **b)** (i) Show that for four capacitors connected in series, total capacitor is given by:

$$\frac{1}{C_{T}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} + \frac{1}{C_{4}} + \frac{1}{Cn} + etc$$

(ii) Show that for four capacitor connected in parallel total capacitance C<sub>T</sub> is given by:

$$C_T = C_1 + C_2 + C_3 + C_4 + C_n + etc$$

# (4 marks)

- $\begin{array}{c} 8\mu F & 4\mu F \\ \textbf{c)} \ (i) \ A \text{ network consists of a} & , \ capacitor \ connected \ in \ parallel \ with \ a} & capacitor \ to \ a \ 15V \ d.c \\ & \ supply. \ Determine \ the \ charge \ taken \ from \ the \ source. \ (5 \ marks) \end{array}$ 
  - (ii) A network comprises three capacitors connected in series to give a total effective capacitance of  $4\mu F$   $10\mu F$   $20\mu F$ . If two of the capacitors have capacitance of and , determine the value of the 3<sup>rd</sup>

capacitor.

(5 marks)

(2 marks)

(4 marks)