

TECHNICAL UNIVERISTY OF MOMBASA

Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

UNIVERSITY EXAMINATION FOR BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOGY (BTIT J12/FT)

EIT 4110: DISCRETE STRUCTURES

END OF SEMESTER EXAMINATION SERIES: APRIL 2013 TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

Answer Booklet

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

- a) Distinguish between "Logic" and "Propositional Logic"
- b) Use a directed graph to represent the relationship R= {(1, 1), (1,3), (2,1), (2,3), (2,4), (3,1), (3,), (4,1)}
 (4 marks)
- c) Find the Cartesian product A x B given that $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Hence show that the product B x A is not same as A x B. (6 marks)
- **d)** Define the following terms:
 - (i) Tautology
 - (ii) Contradiction
 - (iii) Power set
 - (iv) Mutligraph
 - (v) Logical equivalence

(10 marks)

(4 marks)

(6 marks)

Question Two

 $\mathcal{E} =$ **a)** Let {1,2,3,....,20}, A = {5, 10, 15, 20} B = {2, 4, 6, 8, 10, 12, 14, 18, 20} and C = {3, 6, 9, 12, 15, 18}

Draw a venn diagram, label the regions and place each element in the appropriate region.

(10 marks)

 ${x:1 \le x \le 10, x \text{ is an int eger}}, A =$

- b) Given U = the set of odd numbers, B = The set of factors of 24 and C = {3, 10}
 - (i) Draw a venn diagram $(A \cup B)' (A \cup C)'$ and $(A \cup B \cup C)'$ (ii) Find (10 marks)

Question Three

a)	Define the following terms: (i) Theorem (ii) Lemma (ii) Collorary	(6 marks)
b)	Prove by induction the theorem: "If n is an odd integer, then n^2 is odd"	(4 marks)
c)	Prove by contraposition the theorem: "If n is an integer and 3n + 2 is odd, then n is odd"	(5 marks)
d) Qu	Prove that $\sqrt{2}$ is irrational by giving a proof by contradiction.	(5 marks)
a)	Draw a graph with the adjacency matrix below. $ \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} $	(6 marks)
b)	Find the adjacency matrix for the multigraph below	(6 marks)

c)	Distinguish the terms "Binary relation" and "Symmetric relation"	(4 marks)
d)	Use an incidence matrix to represent the following graph	(4 marks)
	e	

Question Five

a) Construct a truth table for each of the compound propositions: (p ∨ q) ∧ r

(i) (p → q) ∨ (¬q → r)

(ii) (p ⊕ q) ∨ (p ⊕ q) p

(iii) ¬ (p ∨ q) and ¬ p ∧ ¬ q
are logically equivalent.

(4 marks)

c) Using a truth table, prove that: