

TECHNICAL UNIVERISTY OF MOMBASA

 Faculty of Engineering \&

 Faculty of Engineering \&}

Technology

DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY
 UNIVERSITY EXAMINATION FOR BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOGY (BTIT J12/FT)

EIT 4110: DISCRETE STRUCTURES
END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)
a) Distinguish between "Logic" and "Propositional Logic"
b) Use a directed graph to represent the relationship $R=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3$,$) ,$ $(4,1)\}$
c) Find the Cartesian product $\mathrm{A} \times \mathrm{B}$ given that $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$. Hence show that the product $\mathrm{B} \times \mathrm{A}$ is not same as $\mathrm{A} \times \mathrm{B}$.
d) Define the following terms:
(i) Tautology
(ii) Contradiction
(iii) Power set
(iv) Mutligraph
(v) Logical equivalence
e) Show that $p \rightarrow q$ is equivalent to $\neg q \rightarrow \neg p$

Question Two

$$
\varepsilon=
$$

a) Let $\{1,2,3, \ldots \ldots, 20\}, \mathrm{A}=\{5,10,15,20\}$
$B=\{2,4,6,8,10,12,14,18,20\}$ and $C=\{3,6,9,12,15,18\}$
Draw a venn diagram, label the regions and place each element in the appropriate region.
(10 marks)
$\{x: 1 \leq x \leq 10, x$ is an int eger $\}, A=$
b) Given $\mathrm{U}=$
the set of odd numbers, $\mathrm{B}=$ The set of factors of 24 and $\mathrm{C}=\{3,10\}$
(i) Draw a venn diagram

$$
(A \cup B)^{\prime}(A \cup C)^{\prime} \text { and }(A \cup B \cup C)^{\prime}
$$

(ii) Find

Question Three

a) Define the following terms:
(i) Theorem
(ii) Lemma
(iii) Collorary
b) Prove by induction the theorem:
"If n is an odd integer, then n^{2} is odd"
c) Prove by contraposition the theorem:
"If n is an integer and $3 n+2$ is odd, then n is odd"
$\sqrt{2}$
d) Prove that is irrational by giving a proof by contradiction.

Question Four
a) Draw a graph with the adjacency matrix below.

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

b) Find the adjacency matrix for the multigraph below
c) Distinguish the terms "Binary relation" and "Symmetric relation"
d) Use an incidence matrix to represent the following graph

Question Five

a) Construct a truth table for each of the compound propositions:

$$
(p \vee q) \wedge r
$$

(i)

$$
(p \rightarrow q) \vee \quad(\neg q \rightarrow r)
$$

(ii)

$$
\text { (iii) } \quad(p \oplus q) \vee(p \oplus \quad \text { q) } \quad p
$$

b) Show that
(4 marks)
c) Using a truth table, prove that:

$$
x(y+z)=x y+x z
$$

