THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR BACHELOR OF TECHNOLOGY IN INFORMATION COMMUNICATION TECHNOLOGY (BTech. ICT)

EIT 4104: FOUNDATIONS OF MATHEMATICS
SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: MAY/JUNE 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are clearly shown
This paper consists of FOUR printed pages

Question 1 (Compulsory - 30 Marks)

$$
\log _{x} 4-\log _{4} x=\frac{3}{2}
$$

a) Solve for X in the equation
b) If A and B are sets, using Venn diagrams show that

$$
\frac{-5+2 i}{3+4 i}
$$

c) Find the modulus and argument of

$$
\frac{5}{4} \quad \frac{5}{32}
$$

d) The third term of a G.P is and the sixth term is . Determine the first term, the common ratio and sum of the first six terms of the series.

$$
\lim _{n \rightarrow \infty}\left(\frac{n^{2}-2 n+1}{2 n^{2}+5}\right)
$$

e) Evaluate
f) Find the Pearson correlation coefficient for the data below

X	1	3	4	6	8	9	11	14
Y	1	2	4	4	5	7	8	9

$$
f(x)=\frac{1}{x^{2}}
$$

g) Find the derivative of the following function from first principles: Question 2 (20 Marks)
a) A hardware store recorded the number of bags of cement sold on 52 Saturdays. The results are as shown below.

58	4	85	47	6	51	40	7	80	7	72	4	81
	7			3			0		3		6	
56	6	63	70	5	76	41	8	75	8	75	7	42
	7			4			1		0		1	
70	7	84	72	5	55	61	8	70	4	40	8	71
	9			4			2		7		4	
66	5	81	66	4	43	87	5	70	6	90	6	76
	9			8			5		0		0	

Prepare a grouped frequency distribution table for the data using a class intervals from $40-49, \ldots$. To 90-99
(3 marks)
b) The data below shows the reading speed by some 90 adults.

Speed (wpm)	$121-$	141	-	$161-$	181	-	201	-	221	-	241	-
261	-	281	-									
	140	160	180	200	220	240	260	280	300			
Frequency	2	6	21	26	18	9	4	3	1			

i) Calculate the mean speed
ii) Calculate the median speed
iii) Calculate the standard deviation
iv) State the modal class
c) Compute the rank correlation coefficient for the data below.

X	70	83	90	65	55	75	80	45
Y	120	130	145	110	135	140	95	100

Question 3 (20 Marks)

$$
\begin{gather*}
\text { a) Let } \begin{array}{c}
Z_{1}=2+i \quad Z_{2}=3-2 i \\
\text { and }{ }^{\text {evaluate }} \quad Z_{1}+Z_{2} \quad \text { and } Z_{2} \\
\frac{1}{2} \sin x-\frac{\sqrt{3}}{2} \cos x \\
r \sin (x+\lambda) .
\end{array} \tag{4marks}
\end{gather*}
$$

b) Express
in the form
Determine the value of and , hence solve

$$
\frac{1}{2} \sin x-\frac{\sqrt{3}}{2} \cos x=1 ; 0^{\circ} \leq x^{0} \leq 360^{\circ}
$$

the equation

$$
\begin{equation*}
\sin A=\frac{4}{5} \quad \tan B=\frac{5}{12} \tag{8marks}
\end{equation*}
$$

c) Given that and where A is an obtuse angle and B is an acute angle.

$$
\cos (A-B)
$$

Find, without using mathematical tables and calculators, the value of

$$
\sin x+\cot x \cos x=\operatorname{cosec} x
$$

d) Show that

Question 4 (20 Marks)

$$
2 y+4 x-2=0
$$

a) Find the equation of a line perpendicular to the line and passing through the point $(2,5)$

$$
A(-3,-4), B(6,-1) \quad C(7,6)
$$

b) The co-ordinates of the vertices of a triangle ABC are Find the angle between the lines $A B$ and $B C$.
(4 marks)
c) Find the angle θ between the vectors $\vec{A}=2 i+4 j+6 k \quad \vec{B}=i-3 j+2 k$
(4 marks)
d) Circle passes through the vertices of a triangle ABC whose sides are $9 \mathrm{~cm}, 8 \mathrm{~cm}$ and 7 cm . Find the radius of the circle.
(5 marks)

$$
\vec{r}_{1}=2 \vec{i}+4 \vec{j}-5 k \quad \vec{r}_{2}=\vec{i}+2 \vec{j}+3 \vec{k}
$$

e) Find the vector parallel the resultant of vectors
and

Question 5 (20 Marks)

$$
2^{2 x-2}+\frac{1}{16^{-(x-1)}}=320
$$

a) Solve for x in the equation

$$
S=\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\ldots \ldots . .
$$

b) A series is given as
confirm that the series converges and find the sum to infinity.
c) There are three cars, A, B and C in a race. A is twice as likely to win as B while B is twice as likely to win as C. Find the probability that.
(i) A wins the race
(ii) Either B or C wins the race
d) A line with gradient of -3 passes through the points $(3, k)$ and $(k, 8)$. Find the value of k and $a x+b y=c$
hence express the equation of the line in the form where a, b and c are constants

$$
\begin{equation*}
\frac{\sec ^{2} \theta-1}{\sec ^{2} \theta}=\sin ^{2} \theta \tag{4marks}
\end{equation*}
$$

e) Show that

