THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY

UNIVERSITY EXAMINATION FOR DEGREE IN
 BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY (BSc. I.T 9S)
 (YR III, SEM I)

EIT 2212: BUSINESS SYSTEM MODELLING

END OF SEMESTER EXAMINATIONS

SERIES: AUGUST/SEPTEMBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question is as shown
This paper consists of THREE printed pages
SECTION A (Compulsory - 30 marks)

Question 1

a Explain the following terms
i) Operations Research
ii) Business System
iii) Model
iv) Regression analysis
b) Explain the SIX stages followed in an Operations Research study
c) Explain any TWO assumptions usually made in Economic Order Quantity calculations (4 marks)
d) Explain any THREE investment appraisal techniques

Question 2 (20 marks)
a) Explain any THREE application areas of simulation
b) Over a period of 60 days demand for training in a specific computer package was recorded by Mwambao Computer College as follows:

No. of inquiries	Frequency (days)
	5
1	6
2	16
3	14
4	10
5	7
6	2

Simulate the daily inquiries for a 15 day period using the random numbers provided below:
84649489687521575215754984953974240034664929236401
Question 3 (20 marks)
a) Using well illustrated diagrams, explain the following queuing models
i) Single channel single-phase model
ii) Single channel multi-phase model
iii) Multi-channel single-phase model
iv) Multi-channel multi-phase model
b) In a simple queue situation, an average arrival rate of 15 per hour had been observed and the service facility can on average deal with 20 items per hour.

Determine:
i) The traffic intensity
ii) The average number of items in the queue including the times when there is no queue
iii) The average time in the queue
iv) The average time in the system

Question 4 (20 marks)
a) Two projects with the following estimates are being considered:

Project A

Optimistic Outcome of Ksh. 600,000 with a probability of 0.2
Most likely Outcome of Ksh 350,000 with a probability of 0.5
Pessimistic Outcome of Ksh. 250,000 with a probability of 0.3

Project B

Optimistic Outcome of Ksh. 650,000 with a probability of 0.1
Most likely Outcome of Ksh 400,000 with a probability of 0.6
Pessimistic Outcome of Ksh. 100,000 with a probability of 0.3
Using the data given, explain which project would be preferred.
b) The sugar requirement for a certain institution is as follows:

- Average usage $=300$ Kgs per week
- Minimum usage $=220$ Kgs per week
- Maximum usage $=420$ Kgs per week
- Lead time $=10$ to 14 weeks
- EOQ = 3500 Kgs

Use this information to calculate:
i) Reorder level
ii) Minimum stock level
iii) Maximum stock level at the institution

Question 5 (20 marks)
a) Explain any THREE assumptions used in Linear Programming technique
b) A company owns two flour mills A and B . The mills have different production capacities for high, medium and low grades of flour. The company has entered a contract to supply 24,16 and 48 bags of high, medium and low grades of flour respectively. It costs the company shs 1000 and shs 800 per week to run mills A and B respectively. In a week, mill A produces 12, 4 and 8 bags of high, medium and low grades of flour respectively while mill B produces 4,4 and 24 bags of high, medium and low grades of flour respectively.
i) Develop a linear programming model to represent this information
ii) Use graphical method to solve the model developed in (a) above

